

Diggers Water Based Turps

Recochem Inc.

Chemwatch Hazard Alert Code: 2

Issue Date: **04/02/2024**Print Date: **04/02/2024**L.GHS.AUS.EN

Part Number: 80020 Version No: 1.2

Safety Data Sheet according to WHS Regulations (Hazardous Chemicals) Amendment 2020 and ADG requirements

SECTION 1 Identification of the substance / mixture and of the company / undertaking

Product Identifier

Product name: Diggers Water Based Turps

Synonyms: Not Available

Other means of identification: Not Available

Relevant identified uses of the substance or mixture and uses advised against

Relevant identified uses:

Water based turps

Details of the manufacturer or supplier of the safety data sheet

Registered company name	Recochem Inc.		
Address	1809 Lytton Road QLD 4178 Australia		
Telephone	+61 7 3308 5200		
Fax	+61 7 3308 5201		
Website	www.recochem.com.au		
Email	recoaust@recochem.com		

Emergency telephone number

Association / Organisation	Poisons Information		
Emergency telephone numbers	Australia: 13 11 26		
Other emergency telephone numbers	New Zealand: 0800 764 766		

SECTION 2 Hazards identification

Classification of the substance or mixture

	Poisons Schedule	ule Not Applicable			
	Classification ^[1]	Serious Eye Damage/Eye Irritation Category 2A			
Legend: 1. Classified by Chemwatch; 2. Classification drawn from HCIS; 3. Classification drawn from Regulation (EU) No 1272/2008 - Anne.					

Label elements

Hazard pictogram(s)

Signal word: Warning

Hazard statement(s)

H319: Causes serious eye irritation.

Precautionary statement(s) Prevention

P280: Wear protective gloves, protective clothing, eye protection and face protection.

P264: Wash all exposed external body areas thoroughly after handling.

Precautionary statement(s) Response

P305+P351+P338: IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing. P337+P313: If eye irritation persists: Get medical advice/attention.

Precautionary statement(s) Storage

Not Applicable

Precautionary statement(s) Disposal

Not Applicable

SECTION 3 Composition / information on ingredients

Substances

See section below for composition of Mixtures

Version No: 1.2

Diggers Water Based Turps

Issue Date: **04/02/2024**Print Date: **04/02/2024**

Mixtures

CAS No	%[weight]	Name
7732-18-5	94	water
67254-71-1	2	alcohols C10-12, ethoxylated
112-34-5	3	diethylene glycol monobutyl ether
7758-29-4	1	sodium tripolyphosphate

Legend:

1. Classified by Chemwatch; 2. Classification drawn from HCIS; 3. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI; 4. Classification drawn from C&L;

* EU IOELVs available

SECTION 4 First aid measures

Description of first aid measures

Eye Contact

If this product comes in contact with the eyes:

- Wash out immediately with fresh running water.
- Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids.
- Seek medical attention without delay; if pain persists or recurs seek medical attention.
- Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.

Skin Contact

If skin or hair contact occurs:

- Flush skin and hair with running water (and soap if available).
- Seek medical attention in event of irritation.

Inhalation

- If fumes, aerosols or combustion products are inhaled remove from contaminated area.
- Other measures are usually unnecessary.

Ingestion

- Immediately give a glass of water.
- First aid is not generally required. If in doubt, contact a Poisons Information Centre or a doctor.

Indication of any immediate medical attention and special treatment needed

Treat symptomatically

SECTION 5 Firefighting measures

Extinguishing media

The product contains a substantial proportion of water, therefore there are no restrictions on the type of extinguishing media which may be used. Choice of extinguishing media should take into account surrounding areas.

Though the material is non-combustible, evaporation of water from the mixture, caused by the heat of nearby fire, may produce floating layers of combustible substances

In such an event consider:

- foam.
- dry chemical powder.
- carbon dioxide.

Special hazards arising from the substrate or mixture

Fire Incompatibility

None known.

Advice for firefighters

Fire Fighting

- Alert Fire Brigade and tell them location and nature of hazard.
- Wear breathing apparatus plus protective gloves in the event of a fire.
- Prevent, by any means available, spillage from entering drains or water courses.
- Use fire fighting procedures suitable for surrounding area.
- DO NOT approach containers suspected to be hot.
- Cool fire exposed containers with water spray from a protected location.
- If safe to do so, remove containers from path of fire.
- Equipment should be thoroughly decontaminated after use.

Fire/Explosion Hazard

- The material is not readily combustible under normal conditions.
- However, it will break down under fire conditions and the organic component may burn.
- Not considered to be a significant fire risk.
- Heat may cause expansion or decomposition with violent rupture of containers.
- Decomposes on heating and may produce toxic fumes of carbon monoxide (CO).
- May emit acrid smoke.

Decomposes on heating and produces toxic fumes of:

carbon dioxide (CO2)

other pyrolysis products typical of burning organic material.

May emit poisonous fumes.

May emit corrosive fumes.

 Part Number: 80020
 Page 3 of 12
 Issue Date: 04/02/2024

 Version No: 1.2
 Print Date: 04/02/2024

Diggers Water Based Turps

HAZCHEM

Not Applicable

SECTION 6 Accidental release measures

Personal precautions, protective equipment and emergency procedures

See section 8

Environmental precautions

See section 12

Methods and material for containment and cleaning up

Minor Spills

Environmental hazard - contain spillage.

- Clean up all spills immediately.
- Avoid breathing vapours and contact with skin and eyes.
- Control personal contact with the substance, by using protective equipment.
- Contain and absorb spill with sand, earth, inert material or vermiculite.
- Wine ur
- Place in a suitable, labelled container for waste disposal.

Major Spills

Environmental hazard - contain spillage.

Moderate hazard.

- Clear area of personnel and move upwind.
- Alert Fire Brigade and tell them location and nature of hazard.
- Wear breathing apparatus plus protective gloves
- Prevent, by any means available, spillage from entering drains or water course.
- Stop leak if safe to do so.
- Contain spill with sand, earth or vermiculite.
- Collect recoverable product into labelled containers for recycling
- Neutralise/decontaminate residue (see Section 13 for specific agent).
- Collect solid residues and seal in labelled drums for disposal.
- Wash area and prevent runoff into drains.
- After clean up operations, decontaminate and launder all protective clothing and equipment before storing and re-using.
- If contamination of drains or waterways occurs, advise emergency services.

Personal Protective Equipment advice is contained in Section 8 of the SDS.

SECTION 7 Handling and storage

Precautions for safe handling

Safe handling

- Avoid all personal contact, including inhalation.
- Wear protective clothing when risk of exposure occurs.
- Use in a well-ventilated area.
- Prevent concentration in hollows and sumps.
- DO NOT enter confined spaces until atmosphere has been checked.
- DO NOT allow material to contact humans, exposed food or food utensils.
- Avoid contact with incompatible materials.
- When handling, **DO NOT** eat, drink or smoke.
- Keep containers securely sealed when not in use.
- Avoid physical damage to containers.
- Always wash hands with soap and water after handling.
- Work clothes should be laundered separately. Launder contaminated clothing before re-use.
- Use good occupational work practice
- Observe manufacturer's storage and handling recommendations contained within this SDS.
- Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions are maintained.

Other information

Conditions for safe storage, including any incompatibilities

Suitable container

- Polyethylene or polypropylene container.
- Packing as recommended by manufacturer.
- Check all containers are clearly labelled and free from leaks.

Storage incompatibility

None known

SECTION 8 Exposure controls / personal protection

Control parameters

Occupational Exposure Limits (OEL)

INGREDIENT DATA

Not Available

Page **4** of **12** Issue Date: **04/02/2024**Print Date: **04/02/2024**

Ingredient	Occupational Exposure Band Rating	Occupational Exposure Band Limit		
alcohols C10-12, ethoxylated	Е	≤ 0.1 ppm		
diethylene glycol monobutyl ether	Е	≤ 0.1 ppm		
sodium tripolyphosphate	Е	≤ 0.01 mg/m³		
Notes:	Occupational exposure banding is a process of assigning chemicals into specific categories or bands based on a chemical's potency and the adverse health outcomes associated with exposure. The output of this process is an occupational exposure band (OEB), which corresponds to a range of exposure that are expected to protect worker health.			

Diggers Water Based Turps

MATERIAL DATA

Version No: 1.2

For diethylene glycol monobutyl ether:

CEL TWA: 15.5 ppm, 100 mg/m3

(CEL = Chemwatch Exposure Limit)

In studies involving the inhalation toxicity of diethylene glycol monobutyl ether, exposure for 6 hours daily at 100 mg/m3 had no effect. This concentration is in the range of the saturated vapour concentration.

Local damage was produced following inhalation of concentrations higher than the saturated vapour concentrations, that is, during inhalation of the aerosol (350 mg/m3). Since the only potential effects of inhalation are restricted to local discomfort (in the aerosol concentration range) the substance is classified in category I for the limitation of exposure peaks. Teratogenicity studies have not revealed prenatal toxic effects at high oral doses and this ether is classified in pregnancy risk group C.

Exposure controls

Appropriate engineering controls

Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection.

The basic types of engineering controls are:

Process controls which involve changing the way a job activity or process is done to reduce the risk.

Enclosure and/or isolation of emission source which keeps a selected hazard 'physically' away from the worker and ventilation that strategically 'adds' and 'removes' air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use.

Employers may need to use multiple types of controls to prevent employee overexposure.

General exhaust is adequate under normal operating conditions. Local exhaust ventilation may be required in specific circumstances. If risk of overexposure exists, wear approved respirator. Correct fit is essential to obtain adequate protection. Provide adequate ventilation in warehouse or closed storage areas. Air contaminants generated in the workplace possess varying 'escape' velocities which, in turn, determine the 'capture velocities' of fresh circulating air required to effectively remove the contaminant.

Type of Contaminant:	Air Speed:
solvent, vapours, degreasing etc., evaporating from tank (in still air).	0.25-0.5 m/s (50-100 f/min)
aerosols, fumes from pouring operations, intermittent container filling, low speed conveyer transfers, welding, spray drift, plating acid fumes, pickling (released at low velocity into zone of active generation)	0.5-1 m/s (100-200 f/min.)
direct spray, spray painting in shallow booths, drum filling, conveyer loading, crusher dusts, gas discharge (active generation into zone of rapid air motion)	1-2.5 m/s (200-500 f/min.)
grinding, abrasive blasting, tumbling, high speed wheel generated dusts (released at high initial velocity into zone of very high rapid air motion).	2.5-10 m/s (500-2000 f/min.)

Within each range the appropriate value depends on:

Lower end of the range	Upper end of the range
1: Room air currents minimal or favourable to capture	1: Disturbing room air currents
2: Contaminants of low toxicity or of nuisance value only.	2: Contaminants of high toxicity
3: Intermittent, low production.	3: High production, heavy use
4: Large hood or large air mass in motion	4: Small hood-local control only

Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 1-2 m/s (200-400 f/min) for extraction of solvents generated in a tank 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used.

Individual protection measures, such as personal protective equipment

Eye and face protection

- Safety glasses with side shields.
- Chemical goggles. [AS/NZS 1337.1, EN166 or national equivalent]
- Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59].

Skin protection

See Hand protection below

Diggers Water Based Turps

Hands/feet protection

The selection of suitable gloves does not only depend on the material, but also on further marks of quality which vary from manufacturer to manufacturer. Where the chemical is a preparation of several substances, the resistance of the glove material can not be calculated in advance and has therefore to be checked prior to the application.

The exact break through time for substances has to be obtained from the manufacturer of the protective gloves and has to be observed when making a final choice

Personal hygiene is a key element of effective hand care. Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.

Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include:

- · frequency and duration of contact
- · chemical resistance of glove material,
- · glove thickness and
- dexterity

Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739, AS/NZS 2161.1 or national equivalent).

- · When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended.
- · When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended.
- Some glove polymer types are less affected by movement and this should be taken into account when considering gloves for long-term use.
- · Contaminated gloves should be replaced.

As defined in ASTM F-739-96 in any application, gloves are rated as:

- · Excellent when breakthrough time > 480 min
- · Good when breakthrough time > 20 min
- · Fair when breakthrough time < 20 min
- · Poor when glove material degrades

For general applications, gloves with a thickness typically greater than 0.35 mm, are recommended.

It should be emphasised that glove thickness is not necessarily a good predictor of glove resistance to a specific chemical, as the permeation efficiency of the glove will be dependent on the exact composition of the glove material. Therefore, glove selection should also be based on consideration of the task requirements and knowledge of breakthrough times. Glove thickness may also vary depending on the glove manufacturer, the glove type and the glove model. Therefore, the manufacturers technical data should always be taken into account to ensure selection of the most appropriate glove for the task.

Note: Depending on the activity being conducted, gloves of varying thickness may be required for specific tasks. For example:

- · Thinner gloves (down to 0.1 mm or less) may be required where a high degree of manual dexterity is needed. However, these gloves are only likely to give short duration protection and would normally be just for single use applications, then disposed of.
- · Thicker gloves (up to 3 mm or more) may be required where there is a mechanical (as well as a chemical) risk i.e. where there is abrasion or puncture potential

Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.

- Wear chemical protective gloves, e.g. PVC.
- Wear safety footwear or safety gumboots, e.g. Rubber

Body protection

See Other protection below

Other protection

- Overalls
- P.V.C apron.
- Barrier cream. - Skin cleansing cream.
- Eye wash unit

SECTION 9 Physical and chemical properties

Information on basic physical and chemical properties

Appearance

Clear colourless liquid

Physical state	Liquid	Relative density (Water = 1)	1.000 - 1.010
Odour	Not Available	Partition coefficient n-octanol / water	Not Available
Odour threshold	Not Available	Auto-ignition temperature (°C)	Not Applicable
pH (as supplied)	< 10.5	Decomposition temperature (°C)	Not Available
Melting point / freezing point (°C)	0	Viscosity (cSt)	Not Available
Initial boiling point and boiling range (°C)	100	Molecular weight (g/mol)	Not Applicable
Flash point (°C)	Not Applicable	Taste	Not Available
Evaporation rate	Not Available	Explosive properties	Not Available
Flammability	Not Applicable	Oxidising properties	Not Available
Upper Explosive Limit (%)	Not Applicable	Surface Tension (dyn/cm or mN/m)	Not Available
Lower Explosive Limit (%)	Not Applicable	Volatile Component (%vol)	Not Available
Vapour pressure (kPa)	Not Available	Gas group	Not Available
Solubility in water	Miscible	pH as a solution (1%)	Not Available
Vapour density (Air = 1)	Not Available	VOC g/L	Not Available

Version No: 1.2

Diggers Water Based Turps

Issue Date: **04/02/2024**Print Date: **04/02/2024**

SECTION 10 Stability and reactivity

Reactivity

See section 7

Chemical stability:

- Unstable in the presence of incompatible materials.
- Product is considered stable.
- Hazardous polymerisation will not occur.

Possibility of hazardous reactions:

See section 7

Conditions to avoid:

See section 7

Incompatible materials:

See section 7

Hazardous decomposition products:

See section 5

SECTION 11 Toxicological information

Information on toxicological effects

Inhaled

The material is not thought to produce adverse health effects or irritation of the respiratory tract (as classified by EC Directives using animal models). Nevertheless, good hygiene practice requires that exposure be kept to a minimum and that suitable control measures be used in an occupational setting.

Not normally a hazard due to non-volatile nature of product

Ingestion

The material has NOT been classified by EC Directives or other classification systems as 'harmful by ingestion'. This is because of the lack of corroborating animal or human evidence. The material may still be damaging to the health of the individual, following ingestion, especially where pre-existing organ (e.g liver, kidney) damage is evident. Present definitions of harmful or toxic substances are generally based on doses producing mortality rather than those producing morbidity (disease, ill-health). Gastrointestinal tract discomfort may produce nausea and vomiting. In an occupational setting however, ingestion of insignificant quantities is not thought to be cause for concern.

Skin Contact

The material is not thought to produce adverse health effects or skin irritation following contact (as classified by EC Directives using animal models). Nevertheless, good hygiene practice requires that exposure be kept to a minimum and that suitable gloves be used in an occupational setting.

Open cuts, abraded or irritated skin should not be exposed to this material

Entry into the blood-stream through, for example, cuts, abrasions, puncture wounds or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected.

Eye

Evidence exists, or practical experience predicts, that the material may cause eye irritation in a substantial number of individuals and/or may produce significant ocular lesions which are present twenty-four hours or more after instillation into the eye(s) of experimental animals.

Repeated or prolonged eye contact may cause inflammation characterised by temporary redness (similar to windburn) of the conjunctiva (conjunctivitis); temporary impairment of vision and/or other transient eye damage/ulceration may occur.

Chronic

Repeated or long-term occupational exposure is likely to produce cumulative health effects involving organs or biochemical systems.

	TOXICITY	IRRITATION			
Diggers Water Based Turps	Not Available	Not Available			
	TOXICITY		IRRITATION		
water	Oral (Rat) LD50: >90000 mg/kg ^[2]		Not Available		
	TOXICITY		IRRITATION		
	dermal (rat) LI	D50: >4000 mg/kg ^[2]	Eye (rabbit): Severe *OECD 405		
alcohols C10-12, ethoxylated	Inhalation(Rat) LC50: >1.6 mg/L4h ^[2]		Skin (rabbit) : Not irritating *OECD 404		
	Oral (Rat) LD50: 1000 mg/kg ^[2]				
	TOXICITY		IRRITATION		
diethylene glycol monobutyl ether	Dermal (rabbit) LD50: 4120 mg/kg ^{[2}				
	Oral (Rat) LD50: 5660 mg/kg ^[2]		Eye (rabbit): 5 mg - SEVERE		
	TOXICITY		IRRITATION		
sodium tripolyphosphate		:) LD50: >3160 mg/kg			
		,			

Part Number: **80020** Page **7** of **12** Issue Date: **04/02/2024**Version No: **1.2** Print Date: **04/02/2024**

Diggers Water Based Turps

Inhalation(Rat) LC50: >0.39 mg/l4h ^[1]
Oral (Rat) LD50: >2000 mg/kg ^[1]

Legend:

1. Value obtained from Europe ECHA Registered Substances - Acute toxicity 2. Value obtained from manufacturer's SDS. Unless otherwise specified data extracted from RTECS - Register of Toxic Effect of chemical Substances

WATER

No significant acute toxicological data identified in literature search.

ALCOHOLS C10-12, ETHOXYLATED

Does not cause skin sensitisation in guinea pig (OECD 406) * Genotoxicity In vitro: with and without metabolic activation OECD 471) - negative In vivo: Oral (24 h) - 1.25-3.4 g/kg; Cell type- germ and somatic (OECD 474 and 475) * - negative Carcinogenicity Oral (rat), male and female 24 months 500 mg/kg - negative. Reproductive toxicity Effect on fertility; Dermal (rat), male and female- target organs: heart OECD 416, liver, lungs, kidney, testes Effects on foetal development: Dermal (rat), male and female NOAEL 250 mg/kg.bw (OECD 416)-no teratogenic effects Repeat dose toxicity: Oral (rat), male and female 2160 hrs NOAEL =500 mg/kg/d * Huntsman SDS

Polyethers, for example, ethoxylated surfactants and polyethylene glycols, are highly susceptible towards air oxidation as the ether oxygens will stabilize intermediary radicals involved. Investigations of a chemically well-defined alcohol (pentaethylene glycol mono-n-dodecyl ether) ethoxylate, showed that polyethers form complex mixtures of oxidation products when exposed to air.

Sensitization studies in guinea pigs revealed that the pure nonoxidized surfactant itself is nonsensitizing but that many of the investigated oxidation products are sensitizers. Two hydroperoxides were identified in the oxidation mixture, but only one (16-hydroperoxy-3,6,9,12,15-pentaoxaheptacosan-1-ol) was stable enough to be isolated. It was found to be a strong sensitizer in LLNA (local lymph node assay for detection of sensitization capacity). The formation of other hydroperoxides was indicated by the detection of their corresponding aldehydes in the oxidation mixture.

On the basis of the lower irritancy, nonionic surfactants are often preferred to ionic surfactants in topical products. However,

their susceptibility towards autoxidation also increases the irritation. Because of their irritating effect, it is difficult

to diagnose ACD to these compounds by patch testing.

Allergic Contact Dermatitis—Formation, Structural Requirements, and Reactivity of Skin Sensitizers.

Ann-Therese Karlberg et al; Chem. Res. Toxicol.2008,21,53-69

Polyethylene glycols (PEGs) have a wide variety of PEG-derived mixtures due to their readily linkable terminal primary hydroxyl groups in combination with many possible compounds and complexes such as ethers, fatty acids, castor oils, amines, propylene glycols, among other derivatives. PEGs and their derivatives are broadly utilized in cosmetic products as surfactants, emulsifiers, cleansing agents, humectants, and skin conditioners.

PEGs and PEG derivatives were generally regulated as safe for use in cosmetics, with the conditions that impurities and by-products, such as ethylene oxides and 1,4-dioxane, which are known carcinogenic materials, should be removed before they are mixed in cosmetic formulations.

Most PEGs are commonly available commercially as mixtures of different oligomer sizes in broadly- or narrowly-defined molecular weight (MW) ranges. For instance, PEG-10,000 typically designates a mixture of PEG molecules (n = 195 to 265) having an average MW of 10,000. PEG is also known as polyethylene oxide (PEO) or polyoxyethylene (POE), with the three names being chemical synonyms. However, PEGs mainly refer to oligomers and polymers with molecular masses below 20,000 g/mol, while PEOs are polymers with molecular masses above 20,000 g/mol, and POEs are polymers of any molecular mass. Relatively small molecular weight PEGs are produced by the chemical reaction between ethylene oxide and water or ethylene glycol (or other ethylene glycol oligomers), as catalyzed by acidic or basic catalysts. To produce PEO or high-molecular weight PEGs, synthesis is performed by suspension polymerization. It is necessary to hold the growing polymer chain in solution during the course of the poly-condensation process. The reaction is catalyzed by magnesium-, aluminum-, or calcium-organoelement compounds. To prevent coagulation of polymer chains in the solution, chelating additives such as dimethylglyoxime are used Safety Evaluation of Polyethyene Glycol (PEG) Compounds for Cosmetic Use: Toxicol Res 2015; 31:105-136 The Korean Society of Toxicology http://doi.org/10.5487/TR.2015.31.2.105

Human beings have regular contact with alcohol ethoxylates through a variety of industrial and consumer products such as soaps, detergents, and other cleaning products. Exposure to these chemicals can occur through ingestion, inhalation, or contact with the skin or eyes. Studies of acute toxicity show that volumes well above a reasonable intake level would have to occur to produce any toxic response. Moreover, no fatal case of poisoning with alcohol ethoxylates has ever been reported. Multiple studies investigating the acute toxicity of alcohol ethoxylates have shown that the use of these compounds is of low concern in terms of oral and dermal toxicity.

Clinical animal studies indicate these chemicals may produce gastrointestinal irritation such as ulcerations of the stomach, pilo-erection, diarrhea, and lethargy. Similarly, slight to severe irritation of the skin or eye was generated when undiluted alcohol ethoxylates were applied to the skin and eyes of rabbits and rats. The chemical shows no indication of being a genotoxin, carcinogen, or mutagen (HERA 2007). No information was available on levels at which these effects might occur, though toxicity is thought to be substantially lower than that of nonylphenol ethoxylates.

Polyethers, for example, ethoxylated surfactants and polyethylene glycols, are highly susceptible towards air oxidation as the ether oxygens will stabilize intermediary radicals involved. Investigations of a chemically well-defined alcohol (pentaethylene glycol mono-n-dodecyl ether) ethoxylate, showed that polyethers form complex mixtures of oxidation products when exposed to air.

Sensitization studies in guinea pigs revealed that the pure nonoxidized surfactant itself is nonsensitizing but that many of the investigated oxidation products are sensitizers. Two hydroperoxides were identified in the oxidation mixture, but only one (16-hydroperoxy-3,6,9,12,15-pentaoxaheptacosan-1-ol) was stable enough to be isolated. It was found to be a strong sensitizer in LLNA (local lymph node assay for detection of sensitization capacity). The formation of other hydroperoxides was indicated by the detection of their corresponding aldehydes in the oxidation mixture.

On the basis of the lower irritancy, nonionic surfactants are often preferred to ionic surfactants in topical products. However, their susceptibility towards autoxidation also increases the irritation. Because of their irritating effect, it is difficult to diagnose allergic contact dermatitis (ACD) to these compounds by patch testing

Overall, alcohol alkoxylates (AAs) are not expected to be systemically toxic, although some short chain ethylene glycol ethers, e.g. methyl and ethyl homologues are of concern for a range of adverse health effects. They include skin and eye irritation, liver and kidney damage, bone marrow and central nervous system (CNS) depression, testicular atrophy, developmental toxicity, and immunotoxicity. For higher propyl and butyl homologues, the toxicity involves haemolysis (anaemia) with secondary effects relating to haemosiderin accumulation in the spleen, liver and kidney, and compensatory haematopoiesis in the bone marrow. Systemic toxicity was shown to decrease with increasing alkyl chain lengths and/or alkoxylation degrees (ECETOC, 2005; US EPA, 2010). The chemicals ethylene glycol hexyl ether (with a longer alkyl chain length, CAS No. 112-25-4) and diethylene glycol butyl ether (with a higher ethoxylation degree, CAS No. 112-34-5) have no evidence of systemic effects including haemolysis.

Commercially available AAs are mixtures of homologues of varying carbon chain lengths and it is possible that some of the

chemicals with an average alkyl chain length C >=6 may also contain shorter alkyl chains C <6. It is not practical to quantify the proportion of shorter C <6 chain lengths present in such chemicals, or these shorter chain lengths may not be present at all. The available data suggest a lack of systemic toxicity for the AE chemicals with potential short alkyl chain presence (NICNASa); therefore, the toxicity of the chemicals in this assessment is unlikely to be significantly affected by the presence of shorter chain alkyl groups.

Alcohol ethoxylates are according to CESIO (2000) classified as Irritant or Harmful depending on the number of EO-units:

EO < 5 gives Irritant (Xi) with R38 (Irritating to skin) and R41 (Risk of serious damage to eyes)

EO > 5-15 gives Harmful (Xn) with R22 (Harmful if swallowed) - R38/41

EO > 15-20 gives Harmful (Xn) with R22-41

>20 EO is not classified (CESIO 2000)

Oxo-AE, C13 EO10 and C13 EO15, are Irritating (Xi) with R36/38 (Irritating to eyes and skin)

AE are not included in Annex 1 of the list of dangerous substances of the Council Directive 67/548/EEC

In general, alcohol ethoxylates (AE) are readily absorbed through the skin of guinea pigs and rats and through the gastrointestinal mucosa of rats. AE are quickly eliminated from the body through the urine, faeces, and expired air (CO2). Orally dosed AE was absorbed rapidly and extensively in rats, and more than 75% of the dose was absorbed. When applied to the skin of humans, the doses were absorbed slowly and incompletely (50% absorbed in 72 hours). Half of the absorbed surfactant was excreted promptly in the urine and smaller amounts of AE appeared in the faeces and expired air (CO2)). The metabolism of C12 AE yields PEG, carboxylic acids, and CO2 as metabolites. The LD50 values after oral administration to rats range from about 1-15 g/kg body weight indicating a low to moderate acute toxicity.

The ability of nonionic surfactants to cause a swelling of the stratum corneum of guinea pig skin has been studied. The swelling mechanism of the skin involves a combination of ionic binding of the hydrophilic group as well as hydrophobic interactions of the alkyl chain with the substrate. One of the mechanisms of skin irritation caused by surfactants is considered to be denaturation of the proteins of skin. It has also been established that there is a connection between the potential of surfactants to denature protein in vitro and their effect on the skin. Nonionic surfactants do not carry any net charge and, therefore, they can only form hydrophobic bonds with proteins. For this reason, proteins are not deactivated by nonionic surfactants, and proteins with poor solubility are not solubilized by nonionic surfactants. A substantial amount of toxicological data and information in vivo and in vitro demonstrates

Diggers Water Based Turps

that there is no evidence for alcohol ethoxylates (AEs) being genotoxic, mutagenic or carcinogenic. No adverse reproductive or developmental effects were observed. The majority of available toxicity studies revealed NOAELs in excess of 100 mg/kg bw/d but the lowest NOAEL for an individual AE was established to be 50 mg/kg bw/day. This value was subsequently considered as a conservative, representative value in the risk assessment of AE. The effects were restricted to changes in organ weights with no histopathological organ changes with the exception of liver hypertrophy (indicative of an adaptive response to metabolism rather than a toxic effect). It is noteworthy that there was practically no difference in the NOAEL in oral studies of 90-day or 2 years of duration in rats. A comparison of the aggregate consumer exposure and the systemic NOAEL (taking into account an oral absorption value of 75%) results in a Margin of Exposure of 5,800. Taking into account the conservatism in the exposure assessment and the assigned systemic NOAEL, this margin of exposure is considered more than adequate to account for the inherent uncertainty and variability of the hazard database and inter and intra-species extrapolations.

AEs are not contact sensitisers. Neat AE are irritating to eyes and skin. The irritation potential of aqueous solutions of AEs depends on concentrations. Local dermal effects due to direct or indirect skin contact in certain use scenarios where the products are diluted are not of concern as AEs are not expected to be irritating to the skin at in-use concentrations. Potential irritation of the respiratory tract is not a concern given the very low levels of airborne AE generated as a consequence of spray cleaner aerosols or laundry powder detergent dust.

In summary, the human health risk assessment has demonstrated that the use of AE in household laundry and cleaning detergents is safe and does not cause concern with regard to consumer use.

For high boiling ethylene glycol ethers (typically triethylene- and tetraethylene glycol ethers):

Skin absorption: Available skin absorption data for triethylene glycol ether (TGBE), triethylene glycol methyl ether (TGME), and triethylene glycol ethylene ether (TGEE) suggest that the rate of absorption in skin of these three glycol ethers is 22 to 34 micrograms/cm2/hr, with the methyl ether having the highest permeation constant and the butyl ether having the lowest. The rates of absorption of TGBE, TGEE and TGME are at least 100-fold less than EGME, EGEE, and EGBE, their ethylene glycol monoalkyl ether counterparts, which have absorption rates that range from 214 to 2890 micrograms/ cm2/hr. Therefore, an increase in either the chain length of the alkyl substituent or the number of ethylene glycol moieties appears to lead to a decreased rate of percutaneous absorption. However, since the ratio of the change in values of the ethylene glycol to the diethylene glycol series is larger than that

of the diethylene glycol to triethylene glycol series, the effect of the length of the chain and number of ethylene glycol moieties on absorption diminishes with an increased number of ethylene glycol moieties. Therefore, although tetraethylene glycol methyl; ether (TetraME) and tetraethylene glycol butyl ether (TetraBE) are expected to be less permeable to skin than TGME and TGBE, the differences in permeation between these molecules may only be slight.

Metabolism: The main metabolic pathway for metabolism of ethylene glycol monoalkyl ethers (EGME, EGEE, and EGBE) is oxidation via alcohol and aldehyde dehydrogenases (ALD/ADH) that leads to the formation of an alkoxy acids. Alkoxy acids are the only toxicologically significant metabolites of glycol ethers that have been detected *in vivo*. The principal metabolite of TGME is believed to be 2-[2-(2-methoxyethoxy)ethoxy] acetic acid. Although ethylene glycol, a known kidney toxicant, has been identified as an impurity or a minor metabolite of glycol ethers in animal studies it does not appear to contribute to the toxicity of glycol ethers.

The metabolites of category members are not likely to be metabolized to any large extent to toxic molecules such as ethylene glycol or the mono alkoxy acids because metabolic breakdown of the ether linkages also has to occur

Acute toxicity: Category members generally display low acute toxicity by the oral, inhalation and dermal routes of exposure. Signs of toxicity in animals receiving lethal oral doses of TGBE included loss of righting reflex and flaccid muscle tone, coma, and heavy breathing. Animals administered lethal oral doses of TGEE exhibited lethargy, ataxia, blood in the urogenital area and piloerection before death.

Irritation: The data indicate that the glycol ethers may cause mild to moderate skin irritation. TGEE and TGBE are highly irritating to the eyes. Other category members show low eye irritation.

Repeat dose toxicity: Results of these studies suggest that repeated exposure to moderate to high doses of the glycol ethers in this category is required to produce systemic toxicity

In a 21-day dermal study, TGME, TGEE, and TGBE were administered to rabbits at 1,000 mg/kg/day. Erythema and oedema were observed. In addition, testicular degeneration (scored as trace in severity) was observed in one rabbit given TGEE and one rabbit given TGME. Testicular effects included spermatid giant cells, focal tubular hypospermatogenesis, and increased cytoplasmic vacuolisation. Due to a high incidence of similar spontaneous changes

in normal New Zealand White rabbits, the testicular effects were considered not to be related to treatment. Thus, the NOAELs for TGME, TGEE and TGBE were established at 1000 mg/kg/day. Findings from this report were considered unremarkable.

A 2-week dermal study was conducted in rats administered TGME at doses of 1,000, 2,500, and 4,000 mg/kg/day. In this study, significantly-increased red blood cells at 4,000 mg/kg/day and significantly-increased urea concentrations in the urine at 2,500 mg/kg/day were observed. A few of the rats given 2,500 or 4,000 mg/kg/day had watery caecal contents and/or

haemolysed blood in the stomach These gross pathologic observations were not associated with any histologic abnormalities in these tissues or alterations in haematologic and clinical chemistry parameters. A few males and females treated with either 1,000 or 2,500 mg/kg/day had a few small scabs or crusts at the test site. These alterations were slight in degree and did not adversely affect the rats

In a 13-week drinking water study, TGME was administered to rats at doses of 400, 1,200, and 4,000 mg/kg/day. Statistically-significant changes in relative liver weight were observed at 1,200 mg/kg/day and higher. Histopathological effects included hepatocellular cytoplasmic vacuolisation (minimal to mild in most animals) and hypertrophy (minimal to mild) in males at all doses and hepatocellular hypertrophy (minimal to mild) in high dose females. These effects were statistically significant at 4,000 mg/kg/day. Cholangiofibrosis was observed in 7/15 high-dose males; this effect was observed in a small number of bile ducts and was of mild severity. Significant, small decreases in total test session motor activity were observed in the high-dose animals, but no other neurological effects were observed. The changes in motor activity were secondary to systemic toxicity

Mutagenicity: Mutagenicity studies have been conducted for several category members. All in vitro and in vivo studies were negative at concentrations up to 5,000 micrograms/plate and 5,000 mg/kg, respectively, indicating that the category members are not genotoxic at the concentrations used in these studies. The uniformly negative outcomes of various mutagenicity studies performed on category members lessen the concern for carcinogenicity.

Reproductive toxicity: Although mating studies with either the category members or surrogates have not been performed, several of the repeated dose toxicity tests with the surrogates have included examination of reproductive organs. A lower molecular weight glycol ether, ethylene glycol methyl ether (EGME), has been shown to be a testicular toxicant. In addition, results of repeated dose toxicity tests with TGME clearly show testicular toxicity at an oral dose of 4,000 mg/kg/day four times greater that the limit dose of 1,000 mg/kg/day recommended for repeat dose studies. It should be noted that TGME is 350 times less potent for testicular effects than EGME. TGBE is not associated with testicular toxicity, TetraME is not likely to be metabolised by any large extent to 2-MAA (the toxic metabolite of EGME), and a mixture containing predominantly methylated glycol ethers in the C5-C11 range does not produce testicular toxicity (even when administered intravenously at 1,000 mg/kg/day).

Developmental toxicity: The bulk of the evidence shows that effects on the foetus are not noted in treatments with . 1,000 mg/kg/day during gestation. At 1,250 to 1,650 mg/kg/day TGME (in the rat) and 1,500 mg/kg/day (in the rabbit), the developmental effects observed included skeletal variants and decreased body weight gain.

DIETHYLENE GLYCOL MONOBUTYL ETHER

The material may produce severe irritation to the eye causing pronounced inflammation. Repeated or prolonged exposure to irritants may produce conjunctivitis. For diethylene glycol monoalkyl ethers and their acetates:

This category includes diethylene glycol ethyl ether (DGEE), diethylene glycol propyl ether (DGPE) diethylene glycol butyl ether (DGBE) and diethylene glycol hexyl ether (DGHE) and their acetates.

Acute toxicity: There are adequate oral, inhalation and/or dermal toxicity studies on the category members. Oral LD50 values in rats for all category members are all > 3000 mg/kg bw, with values generally decreasing with increasing molecular weight. Four to eight hour acute inhalation toxicity studies were conducted for all category members except DGPE in rats at the highest vapour concentrations achievable. No lethality was observed for any of these materials under these conditions. Dermal LD50 values in rabbits range from 2000 mg/kg bw (DGEEA). Signs of acute toxicity in rodents are consistent with non-specific CNS depression typical of organic solvents in general. All category members are slightly irritating to skin and slightly to moderately irritating to eyes (with the exception of DGHE, which is highly irritating to eyes). Sensitisation tests with DGEE, DGEEA, DGPE, DGBE and DGBEA in animals and/or humans were negative.

Repeat dose toxicity: Valid oral studies conducted using DGEE, DGPE, DGBEA, DGHE and the supporting chemical DGBE ranged in duration from 30 days to 2 years. Effects predominantly included kidney and liver toxicity, absolute and/or relative changes in organ weights, and some changes in haematological parameters. All effects were seen at doses greater than 800-1000 mg/kg bw/day from oral or dermal studies; no systemic effects were observed in inhalation studies with less than continuous exposure regimens.

Mutagenicity: DGEE_DGEEA_DGEE_DGEEA_DGEE_DGBEA and DGHE generally tested pegative for mutagenicity in *S. typhimurium* strains TA98_TA100_TA1537_and TA1538_and

Mutagenicity: DGEE, DGEEA, DGBE, DGBEA and DGHE generally tested negative for mutagenicity in *S. typhimurium* strains TA98, TA100, TA1535, TA1537 and TA1538 and DGBEA tested negative in E. coli WP2uvrA, with and without metabolic activation. *In vitro* cytogenicity and sister chromatid exchange assays with DGBE and DGHE in Chinese Hamster Ovary Cells with and without metabolic activation and *in vivo* micronucleus or cytogenicity tests with DGEE, DGBE and DGHE in rats and mice were negative, indicating that these diethylene glycol ethers are not likely to be genotoxic.

Reproductive and developmental toxicity: Reliable reproductive toxicity studies on DGEE, DGBE and DGHE show no effect on fertility at the highest oral doses tested (4,400 mg/kg/day for DGEE in the mouse and 1,000 mg/kg/day for DGBE and DGHE in the rat). The dermal NOAEL for reproductive toxicity in rats administered DGBE also was the highest dose tested (2,000 mg/kg/day). Although decreased sperm motility was noted in F1 mice treated with 4,400 mg/kg/day DGEE in drinking water for 14 weeks, sperm concentrations

 Part Number: 80020
 Page 9 of 12
 Issue Date: 04/02/2024

 Version No: 1.2
 Print Date: 04/02/2024

Diggers Water Based Turps

and morphology, histopathology of the testes and fertility were not affected. Results of the majority of adequate repeated dose toxicity studies in which reproductive organs were examined indicate that DGPE and DGBEA do not cause toxicity to reproductive organs (including the testes). Test material-related testicular toxicity was not noted in the majority of the studies with DGEE or DGEEA.

Results of the developmental toxicity studies conducted with DGEE, DGBE and DGHE are almost exclusively negative. In these studies, effects on the foetus are generally not observed (even at concentrations that produced maternal toxicity). Exposure to 102 ppm (560 mg/m3) DGEE by inhalation (maximal achievable vapour concentration) or 1385 mg/kg/day DGEE by the dermal route during gestation did not cause maternal or developmental toxicity in the rat. Maternal toxicity and teratogenesis were not observed in rabbits receiving up to 1000 mg/kg/day DGBE by the dermal route during gestation; however a transient decrease in body weight was observed, which reversed by Day 21 In the mouse, the only concentration of DGEE tested (3500 mg/kg/day by gavage) caused maternal, but no foetal toxicity. Also, whereas oral administration of 2050 mg/kg/day DGBE (gavage) to the mouse and 1000 mg/kg/day DGHE (dietary) caused maternal toxicity, these doses had no effect on the developing foetus

SODIUM TRIPOLYPHOSPHATE

Asthma-like symptoms may continue for months or even years after exposure to the material ends. This may be due to a non-allergic condition known as reactive airways dysfunction syndrome (RADS) which can occur after exposure to high levels of highly irritating compound. Main criteria for diagnosing RADS include the absence of previous airways disease in a non-atopic individual, with sudden onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. Other criteria for diagnosis of RADS include a reversible airflow pattern on lung function tests, moderate to severe bronchial hyperreactivity on methacholine challenge testing, and the lack of minimal lymphocytic inflammation, without eosinophilia. RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to the concentration of and duration of exposure to the irritating substance. On the other hand, industrial bronchitis is a disorder that occurs as a result of exposure due to high concentrations of irritating substance (often particles) and is completely reversible after exposure ceases. The disorder is characterized by difficulty breathing, cough and mucus production.

Acute Toxicity X Carcinogenicity X
Skin Irritation/Corrosion X Reproductivity X
Serious Eye Damage/Irritation V STOT - Single Exposure X
Respiratory or Skin sensitisation X STOT - Repeated Exposure X
Mutagenicity X Aspiration Hazard X

Legend: X – Data either not available or does not fill the criteria for classification

— Data available to make classification

SECTION 12 Ecological information

Diggers Water Based Turps	Endpoint	Test Duration (hr)	Species	Value	Source			
	Not Available	Not Available	Not Available	Not Available	Not Availab	ole		
water	Endpoint	Test Duration (hr)	Species	Value	Source			
	Not Available	` ,	Not Available	Not Available		ole		
	Endpoint	Test Duration (hr)	Species		Value		Source	
	EC50	72h	Algae or other aquatic plants		>=0.031<=14mg/l		2	
alcohols C10-12, ethoxylated	EC50	48h	Crustacea		1.213mg/l		2	
	LC50	96h	Fish		14.63mg/l		Not Availa	
	NOEC(ECx)	456h	Algae or other	aquatic plants	>=98.9mg/L		Not Availa	
	Endpoint	Test Duration (hr)	Species		Value	Sour	се	
	EC50	72h	Algae or other	aquatic plants	1101mg/l	2		
	EC50	48h	Crustacea		>100mg/l	1		
liethylene glycol monobutyl ether	EC50	96h	Algae or other	aquatic plants	>100mg/l	1		
	LC50	96h	Fish		1300mg/l 2			
	NOEC(ECx)	96h	Algae or other	aquatic plants	>=100mg/l	1		
	Endpoint	Test Duration (hr)	Species		Value		Source	
	EC50	48h	Crustacea		>70.7<101.3	ma/l		
sodium tripolyphosphate	EC50	-	Algae or other a				2	

Legend: Extracted from 1. IUCLID Toxicity Data 2. Europe ECHA Registered Substances - Ecotoxicological Information - Aquatic Toxicity 4. US EPA, Ecotox database - Aquatic Toxicity Data 5. ECETOC Aquatic Hazard Assessment Data 6. NITE (Japan) - Bioconcentration Data 7. METI (Japan) - Bioconcentration Data 8. Vendor Data

On the basis of available evidence concerning either toxicity, persistence, potential to accumulate and or observed environmental fate and behaviour, the material may present a danger, immediate or long-term and /or delayed, to the structure and/ or functioning of natural ecosystems.

DO NOT discharge into sewer or waterways.

Persistence and degradability

Ingredient		Persistence: Water/Soil	Persistence: Air	
water		LOW	LOW	
	diethylene glycol monobutyl ether	LOW	LOW	

Bioaccumulative potential

Г	Ingradiant	Piocecumulation
	Ingredient	Bioaccumulation

 Part Number: 80020
 Page 10 of 12
 Issue Date: 04/02/2024

 Version No: 1.2
 Print Date: 04/02/2024

Diggers Water Based Turps

Ingredient	Bioaccumulation
diethylene glycol monobutyl ether	LOW (BCF = 0.46)

Mobility in soil

Ingredient	Mobility
diethylene glycol monobutyl ether	LOW (KOC = 10)

SECTION 13 Disposal considerations

Waste treatment methods

Product / Packaging disposal

Legislation addressing waste disposal requirements may differ by country, state and/ or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked.

A Hierarchy of Controls seems to be common - the user should investigate:

- Reduction
- Reuse
- Recycling
- Disposal (if all else fails)

This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. If it has been contaminated, it may be possible to reclaim the product by filtration, distillation or some other means. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate.

- DO NOT allow wash water from cleaning or process equipment to enter drains.
- It may be necessary to collect all wash water for treatment before disposal.
- In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first.
- Where in doubt contact the responsible authority.
- Recycle wherever possible.
- Consult manufacturer for recycling options or consult local or regional waste management authority for disposal if no suitable treatment or disposal facility can be identified.
- Dispose of by: burial in a land-fill specifically licensed to accept chemical and / or pharmaceutical wastes or incineration in a licensed apparatus (after admixture with suitable combustible material).
- Decontaminate empty containers. Observe all label safeguards until containers are cleaned and destroyed.

SECTION 14 Transport information

Labels Required

Marine Pollutant

NO

HAZCHEM

Not Applicable

	Land transport (ADG): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS	Air transport (ICAO-IATA / DGR): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS	Sea transport (IMDG-Code / GGVSee): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS
UN number: Not Applicable			
UN proper shipping name: Not Applicable			
Transport hazard class(es): Not Applicable			
Subsidiary Hazard: Not Applicable			
Packing group: Not Applicable			

14.7.2. Transport in bulk in accordance with MARPOL Annex V and the IMSBC Code

Product name	Group
water	Not Available
alcohols C10-12, ethoxylated	Not Available
diethylene glycol monobutyl ether	Not Available
sodium tripolyphosphate	Not Available

14.7.3. Transport in bulk in accordance with the IGC Code

Product name	Ship Type
water	Not Available
alcohols C10-12, ethoxylated	Not Available
diethylene glycol monobutyl ether	Not Available
sodium tripolyphosphate	Not Available

SECTION 15 Regulatory information

Page **11** of **12** Issue Date: 04/02/2024 Part Number: 80020 Version No: 1.2

Diggers Water Based Turps

Print Date: 04/02/2024

Safety, health and environmental regulations / legislation specific for the substance or mixture

water is found on the following regulatory lists

Australian Inventory of Industrial Chemicals (AIIC)

alcohols C10-12, ethoxylated is found on the following regulatory lists

Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals

Australian Inventory of Industrial Chemicals (AIIC)

diethylene glycol monobutyl ether is found on the following regulatory lists

Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals

Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule 5

Australian Inventory of Industrial Chemicals (AIIC)

sodium tripolyphosphate is found on the following regulatory lists

Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule 3

Australian Inventory of Industrial Chemicals (AIIC)

Additional Regulatory Information

Not Applicable

National Inventory Status

National Inventory	Status
Australia - AIIC / Australia Non-Industrial Use	Yes
Canada - DSL	No (alcohols C10-12, ethoxylated)
Canada - NDSL	No (water; alcohols C10-12, ethoxylated; diethylene glycol monobutyl ether; sodium tripolyphosphate)
China - IECSC	Yes
Europe - EINEC / ELINCS / NLP	No (alcohols C10-12, ethoxylated)
Japan - ENCS	No (alcohols C10-12, ethoxylated)
Korea - KECI	No (alcohols C10-12, ethoxylated)
New Zealand - NZIoC	Yes
Philippines - PICCS	No (alcohols C10-12, ethoxylated)
USA - TSCA	No (alcohols C10-12, ethoxylated)
Taiwan - TCSI	Yes
Mexico - INSQ	No (alcohols C10-12, ethoxylated)
Vietnam - NCI	Yes
Russia - FBEPH	No (alcohols C10-12, ethoxylated)
Legend:	Yes = All CAS declared ingredients are on the inventory No = One or more of the CAS listed ingredients are not on the inventory. These ingredients may be exempt or will require registration.

SECTION 16 Other information

Revision Date: 04/02/2024 Initial Date: 09/06/2022

CONTACT POINT

IMMEDIATELY contact the local POISON CONTROL center for your area (24 hours): Alberta 1-800-332-1414 British Columbia 1-800-567-8911 Manitoba 1-855-776-4766 New Brunswick 911 Newfoundland and Labrador 1-866-727-1110 Northwest Territories 1-800-332-1414 Nova Scotia and Prince Edward Island 1-800-565-8161, 1-800-332-1414 or 911 Nunavut 1-800-268-9017 Ontario 1-800-268-9017 Quebec 1-800-463-5060 Saskatchewan 1-866-454-1212 Yukon Territory 867-393-8700 United States 1-800-222-1222 Contactez IMMÉDIATEMENT le centre ANTIPOISON de votre région (24 heures): Alberta 1-800-332-1414 Colombie-Britannique 1-800-567-8911 Manitoba 1-855-776-4766 Nouveau-Brunswick 911 Terre-Neuve-et-Labrador 1-866-727-1110 Territoires du Nord-Ouest 1-800-332-1414 Nouvelle-Écosse et Île-du-Prince-Édouard 1-800-565-8161, 1-800-332-1414 ou 911 Nunavut 1-800-268-9017 Ontario 1-800-268-9017 Québec 1-800-463-5060 Saskatchewan 1-866-454-1212 Territoire du Yukon 867-393-8700 États-Unis: 1-800-222-1222

Other information

Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references.

The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

Definitions and abbreviations

- PC TWA: Permissible Concentration-Time Weighted Average
- PC STEL: Permissible Concentration-Short Term Exposure Limit
- IARC: International Agency for Research on Cancer
- ACGIH: American Conference of Governmental Industrial Hygienists
- STEL: Short Term Exposure Limit
- TEEL: Temporary Emergency Exposure Limit₀
- IDLH: Immediately Dangerous to Life or Health Concentrations
- ES: Exposure Standard

Part Number: 80020 Page 12 of 12 Issue Date: 04/02/2024 Version No: 1.2 Print Date: 04/02/2024

Diggers Water Based Turps

- OSF: Odour Safety Factor
- NOAEL: No Observed Adverse Effect Level
- LOAEL: Lowest Observed Adverse Effect Level
- TLV: Threshold Limit Value
- LOD: Limit Of Detection
- OTV: Odour Threshold Value
- BCF: BioConcentration Factors

- BEI: Biological Exposure IndexDNEL: Derived No-Effect Level
- PNEC: Predicted no-effect concentration
- AIIC: Australian Inventory of Industrial Chemicals
- DSL: Domestic Substances List
- NDSL: Non-Domestic Substances List
- IECSC: Inventory of Existing Chemical Substance in China
 EINECS: European Inventory of Existing Commercial chemical Substances
 ELINCS: European List of Notified Chemical Substances

- ELINGS: European List of incurring Chemical Substances
 NLP: No-Longer Polymers
 ENCS: Existing and New Chemical Substances Inventory
 KECI: Korea Existing Chemicals Inventory
 NZIoC: New Zealand Inventory of Chemicals
 PICCS: Philippine Inventory of Chemicals and Chemical Substances
- TSCA: Toxic Substances Control Act
- TCSI: Taiwan Chemical Substance Inventory
- INSQ: Inventario Nacional de Sustancias Químicas
- NCI: National Chemical Inventory
 FBEPH: Russian Register of Potentially Hazardous Chemical and Biological Substances

Powered by AuthorITe, from Chemwatch.